WEIERSTRASS NORMAL FORMS AND INVARIANTS OF ELLIPTIC SURFACES

RY

ARNOLD KAS

ABSTRACT. Let $\pi\colon S\to B$ be an elliptic surface with a section $\sigma\colon B\to S$. Let $L^{-1}\to B$ be the normal bundle of $\sigma(B)$ in S, and let $W=P(L^{\otimes 2}\oplus L^{\otimes 3}\oplus 1)$ be a P^2 -bundle over B. Let S^* be the surface obtained from S by contracting those components of fibres of S which do not intersect $\sigma(B)$. Then S^* may be imbedded in W and defined by a "Weierstrass equation":

$$y^2z = x^3 - g_2xz^2 - g_3z^3$$

where $g_2 \in H^0(B, \mathcal{C}(L^{\otimes 4}))$ and $g_3 \in H^0(B, \mathcal{C}(L^{\otimes 6}))$. The only singularities (if any) of S^* are rational double points. The triples (L, g_2, g_3) form a set of invariants for elliptic surfaces with sections, and a complete set of invariants is given by $\{(L, g_2, g_3)\}/G$ where $G \cong \mathbb{C}^* \times \mathrm{Aut}(B)$.

An elliptic surface is a morphism $\pi: S \to B$ where S is a compact complex analytic surface, B is a compact Riemann surface, and such that for all but finitely many points $t \in B$, $C_t = \pi^{-1}(t)$ is a nonsingular elliptic curve in S. Throughout this paper we will assume the existence of a section $\sigma: B \to S$ ($\pi \cdot \sigma = \mathrm{id}_B$). In this case, it follows that S is algebraic [3].

 $\pi\colon S\to B$ will be called a minimal elliptic surface if no fibre of S contains an exceptional curve of the first kind. It is possible for $\pi\colon S\to B$ to be a minimal elliptic surface while S is not a minimal surface (rational elliptic surface). If $\pi\colon S\to B$ and $\phi\colon F\to B$ are elliptic surfaces with sections $\sigma\colon B\to S, \tau\colon B\to F$, then a birational mapping is a biholomorphic map $f\colon \pi^{-1}(B')\to \phi^{-1}(B')$ where $B'\subset B$ is a Zariski open set, satisfying: $\phi\cdot f=\pi$ and $f\cdot \sigma=\tau$. Then we have the following

THEOREM. If F is a minimal elliptic surface, then f extends to a holomorphic mapping $\hat{f}: S \to F[3]$.

It is not hard to prove that if $\pi: S \to B$ is any elliptic surface (not necessarily containing a section), then the exceptional curves lying in any fibre of S are disjoint. It follows that there exists a unique minimal model in any birational class of elliptic surfaces [3].

Received by the editors September 15, 1975.

AMS (MOS) subject classifications (1970). Primary 14J10.

Key words and phrases. Elliptic surfaces, Weierstrass equation, rational double points, minimal resolutions.

Now let $\pi\colon S\to B$ be a minimal elliptic surface. If K(S) and K(B) denote the function fields of S and of B respectively, then K(S), as an algebraic function field in one variable over K(B), is of genus 1, and contains a rational point corresponding to the section. It follows that S is birationally equivalent to a (possibly singular) elliptic surface $\pi'\colon S'\to B$ given by a Weierstrass equation. That is, $S'\subset B\times \mathbf{P}^2$ is defined by an equation of the form:

$$y^2z = x^3 - g_2xz^2 - g_3z^3$$

where g_2 , g_3 in K(B) are uniquely determined up to the transformation: $(g_2, g_3) \rightarrow (h^4 g_2, h^6 g_3), h \in K(B)$.

In this paper, we wish to describe a (possibly singular) elliptic surface: $\pi^*: S^* \to B$ closely related to the Weierstrass surface S', such that S^* satisfies:

- (i) The only singularities of S^* are rational double points;
- (ii) S is the minimal resolution of S^* .

Abstractly, S^* is obtained from S by contracting those curves in the singular fibres of S which do not meet the section. We wish to describe a Weierstrass-type equation for S^* .

Let A be the unique divisor on B such that if:

$$\operatorname{div}(g_2) + 4A = \sum_{P \in B} n_P P,$$

$$\operatorname{div}(g_3) + 6A = \sum_{P \in R} m_P P$$

then

- (i) $n_P \geqslant 0$, $m_P \geqslant 0$ for all $P \in B$,
- (ii) $\min(3n_P, 2m_P) < 12$ for all $P \in B$,

i.e., either $n_P < 4$ or $m_P < 6$. If (g_2, g_3) is replaced by $(h^4 g_2, h^6 g_3)$, then A is replaced by A - div(h). Thus the divisor class of A is uniquely determined by the elliptic surface S. Let L = [A] be the line bundle of A, and let (l_{ij}) be a system of transition functions for L with respect to some covering $\{U_i\}$ of B. The meromorphic functions g_2 , g_3 determine sections:

$$g_2^* \in H^0(B, \mathcal{O}_B(4L)), \qquad g_3^* \in H^0(B, \mathcal{O}_B(6L)).$$

 (g_2^*, g_3^*) are determined by S up to the transformation: $(g_2^*, g_3^*) \to (\lambda^4 g_2^*, \lambda^6 g_3^*)$, $\lambda \in \mathbb{C}^*$. g_2^* and g_3^* may be described by systems of holomorphic functions (g_{2i}^*) and (g_{3i}^*) defined on U_i satisfying

$$g_{2i}^* = l_{ij}^4 g_{2j}^*, \qquad g_{3i}^* = l_{ij}^6 g_{3j}^*,$$

on $U_i \cap U_i$.

Let $W = 2L \oplus 3L \oplus 1$. Let $S^* \subset P(W)$ be such that S^* is defined over each piece U_i by the equation:

$$y_i^2 z_i = x_i^3 - g_{2i}^* x_i z_i^2 - g_{3i}^* z_i^3$$

where $(x_i: y_i: z_i)$ are fibre homogeneous coordinates for P(W) over U_i satisfying

$$x_i = l_{ij}^2 x_j, \quad y_i = l_{ij}^3 y_j, \quad z_i = z_j,$$

over $U_i \cap U_i$.

If B' = B - supp (A), then it is clear that $S^*|_{B'} \cong S'|_{B'}$ and therefore S^* is birationally equivalent to S. We will prove that the only singularities of S^* are rational double points. Notice that we have:

$$\min(3 \text{ ord}_P(g_2^*), 2 \text{ ord}_P(g_3^*)) < 12$$

at every point $P \in B$.

LEMMA 1. Consider the isolated singularity

$$y^2 = x^3 - \alpha t^n x - \beta t^m, \quad n > 0, m > 1,$$

in $C^3_{(x,y,t)}$ where $\alpha = \alpha(t)$, $\beta = \beta(t)$, $\alpha(0) \neq 0$, $\beta(0) \neq 0$, and where we assume that $\Delta = 4\alpha^3 t^{3n} - 27\beta^2 t^{2m}$ is not identically zero. Then the above singularity at the origin is a rational double point if and only if $\min(3n, 2m) < 12$.

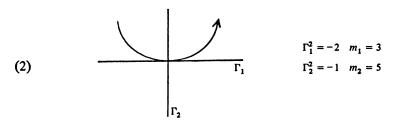
PROOF. We can resolve the singularity explicitly as in [2, p. 81]. We give a table here which describes the graph of the minimal resolution in case n < 4 or m < 6. We follow the notation of [1], namely:

here each vertex represents a nonsingular rational curve with self-intersection -2.

As an illustration, we will carry out the resolution of $y^2 = x^3 - \alpha t^n x - \beta t^5$, $n \ge 4$. After blowing up the origin in the (x, t) plane we get the diagram:

where Γ_i is the exceptional curve,

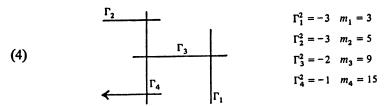
is the proper transform of " $x^3 - \alpha t^n x - \beta t^5 = 0$ " which has a simple cusp, and m_1 is the multiplicity of Γ_1 as a component of the divisor of $x^3 - \alpha t^n x - \beta t^5$. After blowing up the cusp, we get the diagram:



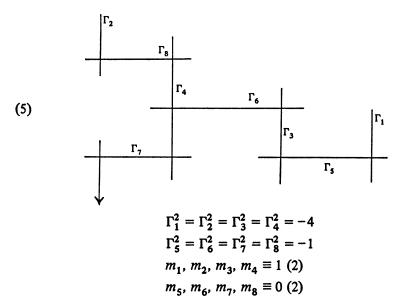
Here Γ_1 represents the proper transform of the Γ_1 of diagram (1). Now, blow up the triple intersection:



Again blow up the triple intersection:



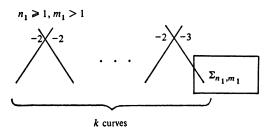
Now blow up each double point. This is to insure that the curves Γ_i with m_i odd are disjoint from one another and from \nearrow .



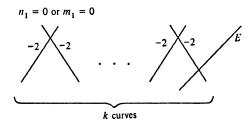
The resolution is then the double covering of diagram (5) ramified over the curves Γ_1 , Γ_2 , Γ_3 , Γ_4 , and \nearrow . This is clearly the graph E_8 .

By tautness of rational double points [1], it follows that $y^2 = x^3 - \alpha t^n x - \beta t^m$ is a rational double point if $\min(3n, 2m) < 12$.

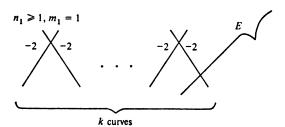
Assume now that $n = 4k + n_1$, $m = 6k + m_1$ where k > 0, $\min(3n_1, 2m_1) < 12$. Then the graph of the resolution of $y^2 = x^3 - t^n \alpha x - t^m$ is one of the following:



where Σ_{n_1,m_1} is taken from the table above;



where E is an elliptic curve with $E^2 = -1$;



where E is a rational curve with one cusp, and $E^2 = -1$.

In any case, the singularity is not a rational double point. This completes the proof of Lemma 1.

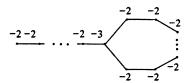
We now consider the singularities of S^* corresponding to poles of j. Thus we consider the surface defined in $C^2_{(x,y)} \times \{|t| < \varepsilon\}$ by $y^2 = x^3 - \alpha(t)x - \beta(t)$, with discriminant $\Delta = 4\alpha^3 - 27\beta^2$ and invariant, $j = 4\alpha^3/\Delta$. We now assume that j has a pole of order r > 0 at t = 0. If we set $\alpha(t) = t^n \alpha_1(t)$, $\beta(t) = t^m \beta_1(t)$ with $\alpha_1(0) \neq 0$, and $\beta_1(0) \neq 0$, then we must have (n, m) = (2k, 3k) for some $k \geq 0$. Notice that after an analytic change of coordinates, the above equation may be transformed to

$$y^2 = (x - t^k)(x^2 - t^{r+2k}\gamma), \qquad \gamma = \gamma(t), \, \gamma(0) \neq 0.$$

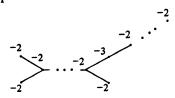
Here again, this singularity may be resolved explicitly by the methods of [2]. We get the following result:

LEMMA 2. The singularity $y^2 = (x - t^k)(x^2 - t^{r+2k}\gamma)$ is not a rational double point if k > 1. It is a rational double point of type D_{r+4} if k = 1, and of type A_{r-1} if k = 0, r > 1.

To be more specific, if k > 1 is even, then the graph of the resolution is:



If k > 1 is odd, the graph is:



If k = 0, the corresponding fibre is of type I_r , while if k = 1, the fibre is of type I_r^* .

It is clear from Lemmas 1 and 2 and our construction of the elliptic surface S^* that the only singularities of S^* are rational double points.

To each point $a \in B$, let C_a^* be the fibre of S^* over a. If S is the minimal resolution of S^* , then the fibre of S over a is of the form:

$$C_a = C_{a0} + \sum_{i \ge 1} n_i C_{aj}$$

where C_{a0} is the proper transform of C_a^* and where $\bigcup_{j>1} C_{aj}$ (if nonempty) form the minimal resolution of a rational double point. Thus we have $C_{aj}^2 = -2$, $K \cdot C_{aj} = 0$ ($j \ge 1$). Since C_a is a fibre of an elliptic surface, $K \cdot C_a = 0$. It follows that $K \cdot C_{a0} = 0$. Thus C_{a0} is not an exceptional curve of the first kind. We may conclude that S is a minimal elliptic surface. We sum up our results.

THEOREM 1. Let $\pi: S \to B$ be a minimal elliptic surface which admits a section. Then there exists a line bundle L on B and sections $g_2 \in H^0(B, \theta_B(4L))$, $g_3 \in H^0(B, \theta_B(6L))$ such that S is the minimal resolution of the surface $S^* \subset P(2L \oplus 3L \oplus 1)$ defined by the "Weierstrass equation"

$$y^2z = x^3 - g_2xz^2 - g_3z^3.$$

The only singularities of S^* are rational double points. L is uniquely determined by the projection π . In fact L^{-1} is the normal bundle of any section $\sigma(B)$ in L, and we have $\deg(L) = p_g - q + 1$. The pair (g_2, g_3) are uniquely determined up to the transformation $(g_2, g_3) \mapsto (\lambda^4 g_2, \lambda^6 g_3)$, $\lambda \in C^*$. The pair (g_2, g_3) satisfy

- (i) $\Delta = 4g_2^3 27g_3^2 \neq 0$.
- (ii) For every $t \in B$, min(3 ord, (g_2) , 2 ord, (g_3)) < 12.

We remark that if S is not a K3 surface, then the projection $\pi\colon S\to B$ is uniquely determined up to an automorphism of B. In fact, if q>0, the Albanese mapping of S factors through the projection π and the Jacobian mapping of B. If q=0, then the projection π is determined by the linear system |mK|, where $m\gg 0$ if S is not a rational surface, and $m\ll 0$ if S is a rational elliptic surface.

Let Y(n, B) = the set of triples (L, g_2, g_3) where L is a line bundle over B with deg (L) = n, $g_2 \in H^0(B, \theta_B(4L))$, $g_3 \in H^0(B, \theta_B(6L))$ and satisfying:

- (i) $\Delta = 4g_2^3 27g^2 3 \neq 0$.
- (ii) For every $t \in B$, min(3 ord, (g_2) , 2 ord, (g_3)) < 12.

Let $X(n, B) = Y(n, B)/C^*$ where C^* acts on Y(n, B) by $(L, g_2, g_3) \mapsto (L, \lambda^4 g_2, \lambda^6 g_3)$. There is a natural action of Aut (B) on X(n, B).

THEOREM 2. There is a 1-1 correspondence between elliptic surfaces $\pi: S \to B$ which admit a section satisfying $p_g - q + 1 = n$, and the set X(n, B). The set of elliptic surfaces S over B (without specifying a projection) which admit a section satisfying $p_g - q + 1 = n$ is in 1-1 correspondence with $X(n, B)/\mathrm{Aut}(B)$, provid-

ed that we exclude the case of elliptic K3 surfaces, i.e., n = 2, $B = \mathbb{P}^1$.

EXAMPLE. Elliptic surfaces over P^1 . There is a unique line bundle L_n of degree n on \mathbf{P}^1 . We may identify $H^0(\mathbf{P}^1, \mathfrak{O}_P, (m))$ with $\mathfrak{P}_m =$ the set of polynomials P(t) of degree $\leq m$. Then $Y(n, \mathbf{P}^1) = \{(P(t), Q(t)) \in \mathfrak{P}_{4n} \times \mathfrak{P}_{6n}\}$ satisfying:

- (i) $4P(t)^3 27O(t)^2 \neq 0$.
- (ii) min(3 ord_a P, 2 ord_a Q) < 12 for every $a \in \mathbb{C}$.

(iii) $\min(12n - 3 \deg P, 12n - 2 \deg Q) < 12$. C* acts on $Y(n, \mathbf{P}^1)$ by $(P, Q) \mapsto (\lambda^4 P, \lambda^6 Q)$. $SL(2, \mathbf{C})/\pm 1 = \text{Aut } (\mathbf{P}^1)$ acts on $Y(n, \mathbf{P}^1)$ by

$$(P,Q) \mapsto \left((ct+d)^{4n} P\left(\frac{at+b}{ct+d}\right), (ct+d)^{6n} Q\left(\frac{at+b}{ct+d}\right) \right).$$

REFERENCES

- 1. E. Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76-102. MR 34 #6789.
- 2. F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Appl. Math., Dekker, New York, 1971. MR 49 #6250.
- 3. K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626. MR 32 #1730.

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331